
 SHAPE Final Project
“Cupboard Jumps”

8.16.24
Dexter Theisen, Siddharth Nair



Problem Statement
01
What are we solving?!



In the house where Krosh used to live, he had n cupboards standing in a line, the i-th 
cupboard had the height of hi. Krosh moved recently, but he wasn't able to move the 
cupboards with him. Now he wants to buy n new cupboards so that they look as similar to 
old ones as possible.

Krosh does not remember the exact heights of the cupboards, but instead for every three 
consecutive cupboards he remembers the height difference between the tallest and the 
shortest of them. In other words, if the cupboards' heights were h1, h2, h3, …, hn, then Krosh 
remembers the values wi = max(hi, hi+1, hi+2) − min(hi, hi+1, hi+2) for all 1<=i<=n-2. 

Krosh wants to buy such n cupboards that all the values w_i remain the same. Help him 
determine the required cupboards' heights, or determine that he remembers something 
incorrectly and there is no suitable sequence of heights.

Note: all cupboards must have a height greater than or equal to 0. 

“Cupboard Jumps” – 3500* rated
From Moscow-based CodeForces Round 707
*3500 is the highest rating a problem can receive



Example Diagram
In this example, the cupboards have 
heights: 7, 7, 6, 1, 5, 5. This means that:

w1 = max(7,7,6) - min(7,7,6) = 7-6 = 1
w2 = max(7,6,1) - min(7,6,1) = 7-1 = 6
w3 = max(6,1,5) - min(6,1,5) = 6-1 = 5
w4 = max(1,5,5) - min(1,5,5) = 5-1 = 4

7 7

h1 6

h1 5 5

h1

h1

h1

1

     hi              h2             h3             h4             h5             h6 



Here, n denotes the number of cupboards 
Krosh has. Each wi denotes respectively the 
range for every 3 cupboards. And C 
represents an upper bound on wi (used 
primarily in the code and not the logic.)

Example Input/Output
Input: Output:

n      C
6      9

w1      w2    w3   w4
1      6      5      4

An example output may look like:

h’1      h’2      h’3      h’4,      h’5      h’6
6      7      6      1      5      1

where h’i denotes the i-th cupboard in 
Krosh’s new house. Note that there can exist 
more than one solution for any given wi, but 
it is our job only to output one.

6      7      6      1      5      1
7-6=1 6-1=5

7-1=6 5-1=4

It can be easily seen 
that our solution 
yields the correct wi:

1      6      5      4



Brainstorming
02
Okay great! What do we do now?



Whiteboarding!!!!



After a few hours of whiteboarding, we had derived some key insights (not all of which did 
we strictly implement):

● Transform the wi into pairwise differences, di = h’i+1 - h’i, and subsequently rewrite wi as 
max(|di|, |di+1|, |di+di+1|).

● WLOG*, assume we can fix h’1 to 0, as even if we end up with some negative h’i, we 
know there must be some k such that all h’i + k >= 0.

● We need to recursively define h’n+1 from h’n, h’n-1, and wi+1 – but how? There are 
multiple ideas here, in minimizing vs maximizing |h’n+1 - h’n| (or doing neither).

● Dex’s Conjecture: if there exists some i such that wi > wi+1 + wi-1, then there exists no h’i 
that satisfy the given wi. This can be proven mathematically by assigning ranges to 
each h’i.

● Direction (ie increasing vs decreasing) of the wi affects how to define hn+1.
● At the start of the sequence, w1 will be in increasing order.
● Set h3’ to w1, and define h’2 such that h1 <= h2 <= h3.
● Utilize some type of dynamic programming or tree system to generate h’n+1 faster

First Thoughts



Some cases

Key points: all h’i need to be equivalent, meaning for the next wi there is some 
constraint/forced h’i.

Key points: very hard to know what value to set intermediate h’ values to, because they 
affect 3 wi.

Key points: Dex’s conjecture only finds about 95% of these cases, meaning our main algo 
will have to check for impossible cases as well.

1

2

3

The case of 0

Alternating wi

No solution



Implementation
03
How exactly did we solve this problem?!



#include <iostream>
#include <deque>
using namespace std;

typedef pair<long, long> pll;
#define MP make_pair
#define fi first
#define se second

const int mn = 1000005;
int n;
long _, w[mn], a[mn], v1[mn], d[mn][3];
bool g[mn], rev[mn];
deque<pll> q;

bool solve() {
   long a = 1, b = 0;
   q.emplace_back(0ll, w[1]);
   for (int i = 1; i <= n; i++) {
       if (a == 1) {
           while (!q.empty() && q.back().se + b > w[i]) {
               pll p = q.back();
               q.pop_back();
               if (p.fi + b <= w[i]) {
                   q.emplace_back(p.fi, w[i] - b);
                   break;
               }
           }
           if (q.empty()) return false;
           if (q.back().se + b == w[i]) {
               g[i] = true;
               while (!q.empty()) q.pop_back();
               q.emplace_back(0, w[i]), a = 1, b = 0;
           } else {
               v1[i] = q.back().se + b;
               a = -1, b = w[i] - b;
               q.emplace_front(b - w[i], b - w[i]);
           }

Full implementation
       else {
           while (!q.empty() && -q.front().fi + b 
> w[i]) {
               pll p = q.front();
               q.pop_front();
               if (-p.se + b <= w[i]) {
                   q.emplace_front(b - w[i], 
p.se);
                   break;
               }
           }
           if (q.empty()) return false;
           if (-q.front().fi + b == w[i]) {
               g[i] = true;
               while (!q.empty()) q.pop_back();
               q.emplace_back(0, w[i]), a = 1, b 
= 0;
           } else {
               v1[i] = -q.front().fi + b;
               a = 1, b = w[i] - b;
               q.emplace_back(w[i] - b, w[i] - 
b);
           }
       }
   }
if (q.empty()) return false;
   d[n][2] = a * q.back().se + b;
   for (int i = n; i; i--) {
       if (i < n) d[i][2] = d[i + 1][0];
       if (d[i][2] != w[i]) {
           if (g[i]) d[i][0] = w[i], d[i][1] = 
w[i] - d[i][2];
           else d[i][1] = w[i], d[i][0] = w[i] - 
d[i][2];
       } else if (g[i]) d[i][0] = w[i], d[i][1] = 
0;
       else d[i][0] = v1[i], d[i][1] = w[i] - 
v1[i];
   }
      

   return true;
}

int main() {
   cin >> n >> _;
   n-=2;
   for (int i = 1; i <= n; i++) cin >> w[i];
   if (solve()) {
       a[1] = 0, a[2] = d[1][0];
       for (int i = 1; i <= n; i++) {
           if (w[i] == d[i][0] && !rev[i - 1]) 
d[i][2] = -d[i][2], rev[i] = true;
           else if (w[i] == d[i][1] && rev[i - 
1]) d[i][2] = -d[i][2], rev[i] = true;
           else if (w[i] == d[i][2] && !rev[i - 
1]) d[i][2] = -d[i][2], rev[i] = true;
           a[i + 2] = a[i + 1] + d[i][2];
       }
       long dlt = 0;
       for (int i = 1; i <= n+2; i++) dlt = 
min(dlt, a[i]);
       cout << "YES" << endl;
       for (int i = 1; i <= n+2; i++) cout << 
a[i] - dlt << " ";
   } else { cout << "NO"; }
   cout << endl;
   return 0;
}

Algo1. define basic variables, 
arrays, and references 

2. define a function solve()

3. iterate over wi, and store 
ranges for pairwise differences di 

in array d

4. backpropagate final ranges in 
array d that satisfy all wi

5. grab inputs n, C, and wi

6. iterate over array d and 
finalize h’i values

7. ensure all values 
are nonnegative

8. print out either YES 
followed by h’i or NO 



Thank you!

Special thanks to our SSLs Abhishek and Courtney for their support


